Difference labelling of digraphs
نویسنده
چکیده
A digraph G is a difference digraph iff there exists an S ⊂ IN such that G is isomorphic to the digraph DD(S) = (V,A), where V = S and A = {(i, j) : i, j ∈ V ∧ i− j ∈ V }. For some classes of digraphs, e.g. alternating trees, oriented cycles, tournaments etc., it is known, under which conditions these digraphs are difference digraphs (cf. [5]). We generalize the so-called sourcejoin (a construction principle to obtain a new difference digraph from two given ones (cf. [5])) and construct a difference labelling for the source-join of an even number of difference digraphs. As an application we obtain a sufficient condition guaranteeing that certain (non-alternating) trees are difference digraphs.
منابع مشابه
More skew-equienergetic digraphs
Two digraphs of same order are said to be skew-equienergetic if their skew energies are equal. One of the open problems proposed by Li and Lian was to construct non-cospectral skew-equienergetic digraphs on n vertices. Recently this problem was solved by Ramane et al. In this paper, we give some new methods to construct new skew-equienergetic digraphs.
متن کاملOn spectral radius of strongly connected digraphs
It is known that the directed cycle of order $n$ uniquely achieves the minimum spectral radius among all strongly connected digraphs of order $nge 3$. In this paper, among others, we determine the digraphs which achieve the second, the third and the fourth minimum spectral radii respectively among strongly connected digraphs of order $nge 4$.
متن کاملVertex Removable Cycles of Graphs and Digraphs
In this paper we defined the vertex removable cycle in respect of the following, if $F$ is a class of graphs(digraphs) satisfying certain property, $G in F $, the cycle $C$ in $G$ is called vertex removable if $G-V(C)in in F $. The vertex removable cycles of eulerian graphs are studied. We also characterize the edge removable cycles of regular graphs(digraphs).
متن کاملOn Mod Difference Labeling of Digraphs
A digraph D = (V,E) is a mod difference digraph if there exist a positive integer m and a labeling L : V → {1, 2, . . . , m − 1} such that (x, y) ∈ E if and only if L(y) − L(x) ≡ L(w)(mod m) for some w ∈ V. In this paper we prove that complete symmetric digraphs, unipaths and unicycles are mod difference digraphs.
متن کاملLinear Sphericity Testing of 3-Connected Single Source Digraphs
It has been proved that sphericity testing for digraphs is an NP-complete problem. Here, we investigate sphericity of 3-connected single source digraphs. We provide a new combinatorial characterization of sphericity and give a linear time algorithm for sphericity testing. Our algorithm tests whether a 3-connected single source digraph with $n$ vertices is spherical in $O(n)$ time.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discussiones Mathematicae Graph Theory
دوره 24 شماره
صفحات -
تاریخ انتشار 2004